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The stereoselective total synthesis of (+)-cardiobutanolide, a polyhydroxylated natural product, is
achieved in high yield through Lu and Guo diene synthesis, Sharpless asymmetric dihydroxylation, and
one-pot deprotection–lactonization. The utility of a recyclable reagent system in PEG for asymmetric
dihydroxylation is demonstrated.
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Polyhydroxylated five- and six-membered ring lactones are
common scaffolds present in natural products isolated from sev-
eral species of Annonanceae family.1,2 These include (+) cardiobut-
anolide 1a, goniofufurone (1b), etharvendiol (1c), and altholactone
(1e) besides others (Fig. 1). These natural products can be consid-
ered as consisting of an aryl group, a polyhydroxy component, and
a lactone ring. The plants from which these compounds have been
isolated display various therapeutic activities in traditional medi-
cine in the treatment of rheumatism, edema, and as mosquito
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repellents.3 Extensive investigations from the research group of
McLaughlin resulted in the isolation and characterization of a ser-
ies of styryllactones, possessing pesticidal, ratogenic, and embryo-
toxic activity and significant to marginal cytotoxic activity against
human tumor cell lines.4 The styryllactone, namely, cardiobutano-
lide was isolated from the stem bark of Goniothalamus cardiopeta-
lus together with four known styryllactones.5

Herein, we wish to communicate a short and high yielding total
synthesis of (+)-cardiobutanolide.6 The key steps are the not so
well-exploited diene ester synthesis, double Sharpless asymmetric
dihydroxylation in polyethylene glycol (PEG), and one-pot depro-
tection–lactonization. Accordingly, we envisaged the retrosynthet-
ic pathway (Scheme 1). The title compound (1a) can be obtained
from globally protected aryl pentol acid 2, through one-pot depro-
tection–lactonization. Compound 2 was prepared from compound
3, which in turn was obtained by means of double asymmetric
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Scheme 1. Retrosynthetic analysis.
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Scheme 2. Reagents and conditions: (a) TBSCl, imidazole, CH2Cl2, 30 min, 78%; (b) (COCl)2, DMSO, �78 �C, 2 h, 87%; (c) ethyl propiolate, LiHMDS, THF, �78 �C, 2 h, 77%; (d)
PPh3, benzene, rt, 3 h, 82%; (e) (DHQD)2PHAL (2 mol %), OsO4 (0.5 mol %), NMO�H2O, PEG-400 MW, 0 �C, 30 h, 84%; (f) 2,2-DMP, CSA (5 mol %), CH2Cl2, 0 �C, 30 min, 85%; (g)
(DHQD)2PHAL (2 mol %), OsO4 (0.5 mol %), PEG-400 MW (recovered system from step e) and NMO�H2O, 0 �C, 30 h, 80%; (h) 2,2-DMP, CSA (5 mol %), CH2Cl2, rt, 2 h, 75%; (i)
LiOH, THF–H2O (7:3), 0 �C, 3 h; (j) NH(Me)(OMe)�HCl, DCC, TEA, DMAP, CH2Cl2, rt, 3 h (80% for two steps); (k) PhMgBr, THF, rt, 1 h, 85%; (l) NaBH4, CeCl3�7H2O, MeOH, �78 �C,
30 min, 74%; (m) TBSOTf, 2,6-lutidine, CH2Cl2, 0 �C, 1 h, 82%; (n) CSA (cat), MeOH, 20 �C, 2 h, 85%; (o) BAIB, TEMPO, CH3CN–H2O (1:1), 0 �C to rt, 3 h; (p) CH2N2, ether, 0 �C,
30 min, 90% (for two steps); (q) TFA–H2O (9:1), concd HCl, CH2Cl2, 0 �C to rt, 3 h, 80%.
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dihydroxylation of diene ester 4. Compound 4 was obtained from
the isomerization of 4-hydroxy-2-ynoic acid 5, which was in turn
prepared from 1,4-butane-diol (6) and ethyl propiolate.

The synthesis commenced from commercially available 1,4-
butanediol (6) which was transformed to the c-hydroxy ethyl pro-
piolate derivative (5), a critical intermediate for diene synthesis.
The selective mono silylation of diol 6 followed by Swern oxidation
of alcohol using oxalyl chloride and DMSO in dichloromethane at
�78 �C gave aldehyde 7. This was then subjected to the crucial step
to append the ethyl propiolate group. The lithiated ethyl propiolate
in THF was added to aldehyde 7 at �78 �C to yield c-hydroxy ethyl
propiolate derivative 5. Following the protocol reported by Lu and
Guo,7 the hydroxy ethyl propiolate 5 was stirred in benzene in the
presence of PPh3 to yield the (E,E) diene ester 4 in 82% yield via al-
lene intermediate 8 which isomerizes to stable diene ester. The
enantio and regioselective Sharpless asymmetric dihydroxylation8

of diene ester 4 was achieved in a stepwise manner for easy isola-
tion. Thus 4 on exposure to (DHQD)2PHAL/OsO4/NMO�H2O in PEG
as reported by us9 provided diol 9 (>90% ee by HPLC). The
acetonide was prepared under standard conditions using 2,2-dime-
thoxypropane (2,2-DMP) and catalytic camphor sulfonic acid (CSA)
in dichloromethane for 30 min at 0 �C provided 10 in 85% yield.

Acetonide (10) was subjected to second Sharpless asymmetric
dihydroxylation10 under the same reaction medium to provide
diisopropylidine derivative 3 after acetonide formation with 2,2-
DMP and CSA in dichloromethane at room temperature for 2 h in
75% yield with good diastereoselectivity (8:2).11

Hydrolysis of ester 3 with LiOH and amidation with Weinreb
salt provided amide 11 in 80% yield (for two steps). Exposure of
this to PhMgBr in THF at room temperature for 1 h gave aryl ketone
12 in 85% yield. This reaction and the previous asymmetric dihydr-
oxylation reaction allow in theory to create diversity in both ste-
reochemistry of hydroxyl groups and also in introducing
substituted aryl groups for analoging. The diastereoselective
reduction of prochiral ketone 12 using NaBH4 and CeCl3�7H2O in
MeOH at �78 �C produced the desired alcohol 13 with reasonable
diastereoselectivity (3:1), which was separated by silica gel chro-
matography.12a–c The silylation of the benzylic hydroxyl group in
dichloromethane was achieved with TBSOTf/2,6-lutidine at 0 �C
for 1 h to give 14 in 82% yield. The selective deprotection of the pri-
mary silyl ether was accomplished with catalytic CSA in methanol
at 20 �C to get the alcohol 15. The exhaustive oxidation of primary
alcohol 15 to carboxylic acid followed by esterification furnished
globally protected aryl pentol acid 2 in 90% yield (for two steps).
The obvious deprotection under aq TFA in the presence of a drop
of concd HCl in dichloromethane at 0 �C allowed concomitant re-
moval of isopropylidine groups and silyl ether and also lactoniza-
tion to furnish the natural product (+)-cardiobutanolide.13 The
spectral features were in complete agreement with those reported
in the literature5,6 (Scheme 2).14

In conclusion, the total synthesis of (+)-cardiobutanolide was
achieved through the application of diene ester synthesis, Sharp-
less asymmetric dihydroxylation protocol in PEG, and global
deprotection–lactonization in one-pot as key steps.
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